selfcarebot/node_modules/random/dist/random.d.ts
2023-03-31 03:22:50 +00:00

267 lines
8.6 KiB
TypeScript

import RNG from './rng';
import RNGFactory from './rng-factory';
/**
* Distribution function
*/
interface IDistFn<R> {
(random: Random, ...argv: any): R;
}
/**
* Distribution
*/
interface IDist<R> {
(): R;
}
/**
* Keyed cache entry
*/
interface ICacheEntry<T> {
key: string;
distribution: () => T;
}
export { RNG, RNGFactory };
/**
* Seedable random number generator supporting many common distributions.
*
* Defaults to Math.random as its underlying pseudorandom number generator.
*
* @name Random
* @class
*
* @param {RNG|function} [rng=Math.random] - Underlying pseudorandom number generator.
*/
export declare class Random {
protected _rng: RNG;
protected _patch: typeof Math.random | undefined;
protected _cache: {
[k: string]: ICacheEntry<any>;
};
constructor(rng?: RNG);
/**
* @member {RNG} Underlying pseudo-random number generator
*/
get rng(): RNG;
/**
* Creates a new `Random` instance, optionally specifying parameters to
* set a new seed.
*
* @see RNG.clone
*
* @param {string} [seed] - Optional seed for new RNG.
* @param {object} [opts] - Optional config for new RNG options.
* @return {Random}
*/
clone<T>(...args: [T]): Random;
/**
* Sets the underlying pseudorandom number generator used via
* either an instance of `seedrandom`, a custom instance of RNG
* (for PRNG plugins), or a string specifying the PRNG to use
* along with an optional `seed` and `opts` to initialize the
* RNG.
*
* @example
* import random from 'random'
*
* random.use('example_seedrandom_string')
* // or
* random.use(seedrandom('kittens'))
* // or
* random.use(Math.random)
*
* @param {...*} args
*/
use(...args: [RNG]): void;
/**
* Patches `Math.random` with this Random instance's PRNG.
*/
patch(): void;
/**
* Restores a previously patched `Math.random` to its original value.
*/
unpatch(): void;
/**
* Convenience wrapper around `this.rng.next()`
*
* Returns a floating point number in [0, 1).
*
* @return {number}
*/
next: () => number;
/**
* Samples a uniform random floating point number, optionally specifying
* lower and upper bounds.
*
* Convence wrapper around `random.uniform()`
*
* @param {number} [min=0] - Lower bound (float, inclusive)
* @param {number} [max=1] - Upper bound (float, exclusive)
* @return {number}
*/
float: (min?: number, max?: number) => number;
/**
* Samples a uniform random integer, optionally specifying lower and upper
* bounds.
*
* Convence wrapper around `random.uniformInt()`
*
* @param {number} [min=0] - Lower bound (integer, inclusive)
* @param {number} [max=1] - Upper bound (integer, inclusive)
* @return {number}
*/
int: (min?: number, max?: number) => number;
/**
* Samples a uniform random integer, optionally specifying lower and upper
* bounds.
*
* Convence wrapper around `random.uniformInt()`
*
* @alias `random.int`
*
* @param {number} [min=0] - Lower bound (integer, inclusive)
* @param {number} [max=1] - Upper bound (integer, inclusive)
* @return {number}
*/
integer: (min?: number, max?: number) => number;
/**
* Samples a uniform random boolean value.
*
* Convence wrapper around `random.uniformBoolean()`
*
* @alias `random.boolean`
*
* @return {boolean}
*/
bool: () => boolean;
/**
* Samples a uniform random boolean value.
*
* Convence wrapper around `random.uniformBoolean()`
*
* @return {boolean}
*/
boolean: () => boolean;
/**
* Returns an item chosen uniformly at trandom from the given array.
*
* Convence wrapper around `random.uniformInt()`
*
* @param {Array<T>} [array] - Lower bound (integer, inclusive)
* @return {T | undefined}
*/
choice<T>(array: Array<T>): T | undefined;
/**
* Generates a [Continuous uniform distribution](https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)).
*
* @param {number} [min=0] - Lower bound (float, inclusive)
* @param {number} [max=1] - Upper bound (float, exclusive)
* @return {function}
*/
uniform: (min?: number, max?: number) => IDist<number>;
/**
* Generates a [Discrete uniform distribution](https://en.wikipedia.org/wiki/Discrete_uniform_distribution).
*
* @param {number} [min=0] - Lower bound (integer, inclusive)
* @param {number} [max=1] - Upper bound (integer, inclusive)
* @return {function}
*/
uniformInt: (min?: number, max?: number) => IDist<number>;
/**
* Generates a [Discrete uniform distribution](https://en.wikipedia.org/wiki/Discrete_uniform_distribution),
* with two possible outcomes, `true` or `false.
*
* This method is analogous to flipping a coin.
*
* @return {function}
*/
uniformBoolean: () => IDist<boolean>;
/**
* Generates a [Normal distribution](https://en.wikipedia.org/wiki/Normal_distribution).
*
* @param {number} [mu=0] - Mean
* @param {number} [sigma=1] - Standard deviation
* @return {function}
*/
normal: (mu?: number, sigma?: number) => () => number;
/**
* Generates a [Log-normal distribution](https://en.wikipedia.org/wiki/Log-normal_distribution).
*
* @param {number} [mu=0] - Mean of underlying normal distribution
* @param {number} [sigma=1] - Standard deviation of underlying normal distribution
* @return {function}
*/
logNormal: (mu?: number, sigma?: number) => () => number;
/**
* Generates a [Bernoulli distribution](https://en.wikipedia.org/wiki/Bernoulli_distribution).
*
* @param {number} [p=0.5] - Success probability of each trial.
* @return {function}
*/
bernoulli: (p?: number) => () => number;
/**
* Generates a [Binomial distribution](https://en.wikipedia.org/wiki/Binomial_distribution).
*
* @param {number} [n=1] - Number of trials.
* @param {number} [p=0.5] - Success probability of each trial.
* @return {function}
*/
binomial: (n?: number, p?: number) => () => number;
/**
* Generates a [Geometric distribution](https://en.wikipedia.org/wiki/Geometric_distribution).
*
* @param {number} [p=0.5] - Success probability of each trial.
* @return {function}
*/
geometric: (p?: number) => () => number;
/**
* Generates a [Poisson distribution](https://en.wikipedia.org/wiki/Poisson_distribution).
*
* @param {number} [lambda=1] - Mean (lambda > 0)
* @return {function}
*/
poisson: (lambda?: number) => () => number;
/**
* Generates an [Exponential distribution](https://en.wikipedia.org/wiki/Exponential_distribution).
*
* @param {number} [lambda=1] - Inverse mean (lambda > 0)
* @return {function}
*/
exponential: (lambda?: number) => () => number;
/**
* Generates an [Irwin Hall distribution](https://en.wikipedia.org/wiki/Irwin%E2%80%93Hall_distribution).
*
* @param {number} [n=1] - Number of uniform samples to sum (n >= 0)
* @return {function}
*/
irwinHall: (n?: number) => () => number;
/**
* Generates a [Bates distribution](https://en.wikipedia.org/wiki/Bates_distribution).
*
* @param {number} [n=1] - Number of uniform samples to average (n >= 1)
* @return {function}
*/
bates: (n?: number) => () => number;
/**
* Generates a [Pareto distribution](https://en.wikipedia.org/wiki/Pareto_distribution).
*
* @param {number} [alpha=1] - Alpha
* @return {function}
*/
pareto: (alpha?: number) => () => number;
/**
* Memoizes distributions to ensure they're only created when necessary.
*
* Returns a thunk which that returns independent, identically distributed
* samples from the specified distribution.
*
* @private
*
* @param {string} label - Name of distribution
* @param {function} getter - Function which generates a new distribution
* @param {...*} args - Distribution-specific arguments
*
* @return {function}
*/
_memoize<T>(label: string, getter: IDistFn<any>, ...args: any[]): IDist<T>;
}
declare const _default: Random;
export default _default;